The molecular and cellular basis of gonadal sex reversal in mice and humans
نویسندگان
چکیده
The mammalian gonad is adapted for the production of germ cells and is an endocrine gland that controls sexual maturation and fertility. Gonadal sex reversal, namely, the development of ovaries in an XY individual or testes in an XX, has fascinated biologists for decades. The phenomenon suggests the existence of genetic suppressors of the male and female developmental pathways and molecular genetic studies, particularly in the mouse, have revealed controlled antagonism at the core of mammalian sex determination. Both testis and ovary determination represent design solutions to a number of problems: how to generate cells with the right properties to populate the organ primordium; how to produce distinct organs from an initially bipotential primordium; how to pattern an organ when the expression of key cell fate determinants is initiated only in a discrete region of the primordium and extends to other regions asynchronously; how to coordinate the interaction between distinct cell types in time and space and stabilize the resulting morphology; and how to maintain the differentiated state of the organ throughout the adult period. Some of these, and related problems, are common to organogenesis in general; some are distinctive to gonad development. In this review, we discuss recent studies of the molecular and cellular events underlying testis and ovary development, with an emphasis on the phenomenon of gonadal sex reversal and its causes in mice and humans. Finally, we discuss sex-determining loci and disorders of sex development in humans and the future of research in this important area.
منابع مشابه
I-17: The Mechanism of Gonadal Sex Determination
Background In mammals, a single exon gene SRY on the Y-chromosome is activated in the XY gonadal primordium and initiates a cascade of molecular and morphological events leading to testicular differentiation. SRY-encoded protein (SRY) is a transcription factor harboring a HMG-box DNAbinding motif that upregulates SOX9, which encodes another transcription factor sharing the DNA binding motif wit...
متن کاملI-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans
Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...
متن کاملO-1: Effects of Recipient Mouse Strain, Sex and Gonadal Status on the Outcome of TestisTissue Xenografting
Background: The aim of the present study was to examine factors that may affect the outcome of testis tissue xenografting. Recipient factors were examined by grafting small fragments of testis tissue from newborn piglets under the back skin of immunodeficient mice of different strains [severe combined immunodeficiency (SCID) vs. nude), sex (male vs. female) and gonadal status (intact vs. gonade...
متن کاملGenetic Screening of Iranian Patients with 46,XY Disorders of Sex Development
Background: Disorders of sex development (DSDs) belong to uncommon pathologies and result from abnormalities during gonadal determination and differentiation. Various gene mutations involved in gonadal determination and differentiation have been associated with gonadal dysgenesis. Despite advances in exploration of genes and mechanisms involved in sex disorders, most children with severe 46,XY ...
متن کاملGadd45γ and Map3k4 Interactions Regulate Mouse Testis Determination via p38 MAPK-Mediated Control of Sry Expression
Loss of the kinase MAP3K4 causes mouse embryonic gonadal sex reversal due to reduced expression of the testis-determining gene, Sry. However, because of widespread expression of MAP3K4, the cellular basis of this misregulation was unclear. Here, we show that mice lacking Gadd45γ also exhibit XY gonadal sex reversal caused by disruption to Sry expression. Gadd45γ is expressed in a dynamic fashio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2012